Neuro-symbolic Rule Learning in Real-world Classification Tasks
Published in AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023), 2023
Recommended citation: K. G. Baugh, N. Cingillioglu, and A. Russo, “Neuro-symbolic Rule Learning in Real-world Classification Tasks,” in Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023), A. Martin, H.-G. Fill, A. Gerber, K. Hinkelmann, D. Lenat, R. Stolle, and F. van Harmelen, Eds., CEUR Workshop Proceedings, 2023. https://ceur-ws.org/Vol-3433/paper12.pdf
Neuro-symbolic rule learning with neural DNF-based models in real-world multi-class and multi-label classification tasks.
Download from AAAI-MAKE 2023 program, CEUR Workshop Proceedings, arXiv
Bibtex for AAAI-MAKE 2023 proceedings
@inproceedings{ns-classifications,
title = {Neuro-symbolic Rule Learning in Real-world Classification Tasks},
year = {2023},
author = {Baugh, Kexin Gu and Cingillioglu, Nuri and Russo, Alessandra},
booktitleaddon = {Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)},
editor = {Martin, Andreas and Fill, Hans-Georg and Gerber, Aurona and Hinkelmann, Knut and Lenat, Doug and Stolle, Reinhard and van Harmelen, Frank},
volume = {Vol-3433},
venue = {Hyatt Regency, San Francisco Airport, California, USA},
publisher = {CEUR Workshop Proceedings},
url = {https://ceur-ws.org/Vol-3433/paper12.pdf},
}
Bibtex for arxiv pre-print
@misc{aaai-make-2023-6465,
title={Neuro-symbolic Rule Learning in Real-world Classification Tasks},
author={Kexin Gu Baugh and Nuri Cingillioglu and Alessandra Russo},
year={2023},
eprint={2303.16674},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Abstract
Neuro-symbolic rule learning has attracted lots of attention as it offers better interpretability than pure neural models and scales better than symbolic rule learning. A recent approach named pix2rule proposes a neural Disjunctive Normal Form (neural DNF) module to learn symbolic rules with feed-forward layers. Although proved to be effective in synthetic binary classification, pix2rule has not been applied to more challenging tasks such as multi-label and multi-class classifications over real-world data. In this paper, we address this limitation by extending the neural DNF module to (i) support rule learning in real-world multi-class and multi-label classification tasks, (ii) enforce the symbolic property of mutual exclusivity (i.e. predicting exactly one class) in multi-class classification, and (iii) explore its scalability over large inputs and outputs. We train a vanilla neural DNF model similar to pix2rule’s neural DNF module for multi-label classification, and we propose a novel extended model called neural DNF-EO (Exactly One) which enforces mutual exclusivity in multi-class classification. We evaluate the classification performance, scalability and interpretability of our neural DNF-based models, and compare them against pure neural models and a state-of-the-art symbolic rule learner named FastLAS. We demonstrate that our neural DNF-based models perform similarly to neural networks, but provide better interpretability by enabling the extraction of logical rules. Our models also scale well when the rule search space grows in size, in contrast to FastLAS, which fails to learn in multi-class classification tasks with 200 classes and in all multi-label settings.